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Abstract
Six model-based methods, ACORN, ATREM, ATCOR4, CAMSS, FLAASH and HATCH, were used to
retrieve reflectance information and water vapor content from synthetic AVIRIS data. The results were
compared using objective method in four spectral segments across the sun radiation light. In the
synthetic data, the highest spectral difference was found to be 26% and the lowest 1.1% in reflectance
units as estimated from the Average Sum of Deviations Squared (ASDS) values. The reflectance-
equivalent ASDS values were lower than the traditional max and min values, as ASDS averages
reflectance in the spectral segment in question. Two kinds of reflectance retrieval difference were
identified: 1) albedo drift and 2) spectral artifacts. Judging from the four selected spectral segments
examined (VIS, NIR, SWIR-1, SWIR-2) a sequence that allocate the best method in each segment was
established. It was recommended that for optimum atmospheric correction all methods are to be run
and then a method for each pixel will be selected using look-up-table based on the surface basic coverage
and the atmospheric condition.. A similar comparison was done with the retrieval of water vapor
content by each of the six methods used. The water vapor content was found to be overestimated by
ATREM (=60%) and underestimated by HATCH (= 15%), whereas ACRON and ATCOR provided the
most realistic results. It was found that the water vapor retrieval difference varies within the actual
water vapor content and is significantly affected by the vegetation content, mainly because of the liquid
water contribution. The prediction difference for the water vapor retrieval was found to have two
sources: 1) liquid water occurrence and 2) miscalculation of the method used. It was concluded that the
results of a model based correction technique, may vary both in retrieving reflectance values and water
vapor content quite significantly from one method to another. This is true even when optimal conditions
are used (zero spatial and spectral noise, no spectra line curvature ect.) and the environment signals are
controlled. When adding other obstacles to the raw data (e.g. spectral and spatial noise, optical effects
and more) more study has to be applied in order to pinpoint on the best method to be used. Although
this study shows a methodology to judge method's performance to remove atmospheric attenuation, a
separate study has to be applied in order to generate a similar look-up-tables per sensor and per mission.
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1. INTRODUCTION
The retrieval of a continuous reflectance spectrum and water vapor content either from air or space platforms on a pixel by
pixel basis, is the major advantage the hyperspectral (HSR, also known as Imaging Spectroscopy) technology provides.
Accurate retrieval of reflectance information of the Earth surface is a key factor for conducting qualitative and quantitative
remote sensing of both the Earth surface and atmosphere. Based on the Earth’s thick atmosphere, significant absorption and



scattering effects along the sun-surface-sensor pathway affect the retrieval of the absolute surface reflectance. Several model-
based methods and strategies to correct the atmospheric effects and retrieve the water vapor content on a pixel by pixel basis
are known and available commercially and scientifically (Mustard et al., 2001). The model-based methods are physically
based codes, in which at sensor radiance is modeled using radiative transfer equations and data from detailed atmospheric and
sun information archives (e.g., HITRAN database). Six model-based major methods are known in HSR practice: ATREM
(Gao et al., 1993), ATCOR (Richter, 1996), ACRON (ACORN, 2001), FLAASH (Adler-Golden, 1998) CAMS5S (O’Neil
1996), and HATCH (Qu et al., 2001) as well as their modifications, described by Sanders et al. (2001). The accessibility of
model based methods in remote sensing packages, their short running time and friendly user interface, make them recently
very popular and widely used by many users. However, as every model-based method relies on a different database and uses a
different approach and different strategy to account for the atmospheric components (e.g. water vapor retrieval), differences in
the final results may be expected. Needless to say, knowledge of the nature and magnitude of such variations are important
for understanding and comparing the spatial, spectral and temporal hyperspectral results. Therefore, studies comparing the
results of the atmospheric calibration methods have been published over the past decade (e.g.: Roberts et al., 1986, Farrand
et al., 1994, Ben-Dor et al., 2002) orienting users to the drawbacks, limitations and advantages of each method. As most of
comparison between methods were made on real data (e.g. Bosch and Alley, 1991), answer which method is adequate can not
be obtained. This is because in real data, several effects are not set to be constant, not all pixels within the scene are
examined and co registration of field and image pixels is problematic. This leads, most of the time to qualitatively rather
than quantitatively based comparison. The purpose of this study is thus, to compare the above six methods under controlled
(synthetic) environment simulating the AVIRIS sensor. AVIRIS is a JPL HSR sensor operates across the VIS-NIR-SWIR
spectral region (0.4-2.5um) and provides, today, the best HSR performances over all worldwide known HSR sensors. It
consists of 224 channels with a 10nm FHMW and a pixel size ranging from 5m to 20 m (depending on the platform
altitude). The comparison in this study is aimed at judging the methods’ performances, objectively and quantitatively, at a
very basic stage, retrieving both surface reflectance and water vapor content using all pixels in the scene. For that purpose we
have generated a synthetic AVIRIS scene and have systematically and quantitatively examined each of the model based
methods described above.

2. MATERIAL AND METHODS

2.1 The retrieval methods used The six selected methods for retrieving reflectance information and water vapor content
from hyperspectral data are briefly described below: ATREM (Atmospheric Removal Method; Gao et al. 1993): HATCH
(High accuracy Atmospheric Correction for Hyperspectral; Qu et al., 2001): ACRON(Atmosphere CORrection Now;
ACORN, 2002): FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hyper cubes Adler- Golden et al, 1998)
ATCOR-4 (Atmospheric and Topographic CORrection Richter and Schlépfer 2002) CAMSS (Canadian Advanced
Modified 58, O'Neill et al, 1996)

2.2. Material 2.2.1 Synthetic AVIRIS Data The synthetic area represents an authentic AVIRIS database (Green and Pavri,
2000) in term of geographic position and landscape (soil and vegetation and their mixture). The atmospheric radiative transfer
code MODTRAN 4 (Berk et al., 1999) was used to create the atmosphere. The code was run 134 times, corresponding to 134
water vapor amounts ranging from a 0.5cm column to a 4.5cm column of water vapor. In order to generate the inputs for
predicting the at-sensor radiance for each water vapor amount, the code was run three times with constant albedos of 0.0 (the
path radiance term), 0.5 and 1.0cm. From these quantities, the two-way transmittance, path radiance, and spherical albedo
were generated. With the addition of the surface reflectance and exoatmospheric solar spectrum, the at-sensor radiance can be
predicted. The solar geometry was chosen to replicate an “average” imaging spectrometer data collection, run with a solar
zenith angle of about 45deg. The MODTRAN model was set to “mid-latitude summer,” a constant surface elevation (0 km),
a visibility of 50 km, a sensor height of 100 km, and a CO2 mixing ratio of 360ppm. The runs were performed with
MODTRAN's two-stream DISORT and correlated-k algorithms. The surface spectral information for the input to the
synthetic data sets was obtained from two field spectra of soil and vegetation acquired in Morgan County, Colorado that
were convolved to an actual AVIRIS 2001 wavelength file (band centers and FHMW). The cube was constructed as follows:
The 134 samples across the image were the 134 water vapor values; sample one contained a 0.5 cm column of water vapor,
sample 134 contained 4.5 cm; the top line consisted of 100% vegetation, and the bottom line, 99% soil. The synthetic
image was run by each selected method and the results were compared to the initial spectral information.

3. Results and Discussion

Figure 1(a,b,c) presents the “true” (input) abundance image of each component that used to generate the at-sensor radiance
data (a—soil, b-vegetation, c-water vapor). Figure 1a shows the reflectance spectra of the endmembers’ targets used to build
the “surface” mixed image (soil and vegetation), while Figure 1b,c shows the radiance spectra of the endmembers (as a
product of applying the atmosphere to the reflectance data) for two water vapor conditions: b -- low water (0.5cm) and ¢ --
high water (4.5cm). As can be seen, the synthetic radiance spectra appear to satisfactorily represent real AVIRIS data, known
from both practice and published literature (example: Green and Pavri, 2001). A noticeable spectral difference between the
two water-level can be seen mainly around the water vapor absorption regions at 0.94, 1.14, and 1.34um, going from low to
high water vapor levels based on the water vapor level variations. The radiance data were then processed to retrieve the
reflectance and water vapor content on a pixel by pixel basis. A discussion follows of the reflectance and water vapor
retrieval performances spectrally.



3.1 Reflectance retrieval

Using the synthetic radiance data set for each of the six methods, new data cubes were generated. To judge the correction
performance we selected 9 targets at different atmosphere and ground locations (4 pixel each) as follows: 100% vegetation
(n1), 50% vegetation and 50% soil, (n2), and 100% soil (#3) across the low, medium and high water vapor conditions of
(0.5(Am), 2.5(Cm) and 4.5(Em) cm water vapor respectively. (n stands for the water vapor content and m for the vegetation
fraction symbols for the selected targets). To objectively and quantitatively judge the performance of each selected methods
to retrieve the reflectance values, we applied a ratio calculation technique in which a selected target is divided by its
corresponding true (input) reflectance data and the deviation from a unity is then calculated and squared-sum across a selected
wavelengths using Average Sum of Deviations Squared (ASDS) ( Ben-Dor et al. (2002) ).

Figures 2 plots the ratio spectra for target C2 (allocated in the center of the image and thus represents average ground and
atmospheric conditions of the synthetic data (50% soil and 50% vegetation at 2.5 cm water vapor content zone). Figure 2a
represent ATREM, HATCH and ATCOR and Figure 2b represents FLAASH, ATCOR and CAMSS. Omitting the strong
abnormal features across the atmospheric absorption spectral zones (around 1.4pum and 1.9um) and across the two spectral
edges (at 0.45um> and at 2.45um< respectively), we divided the spectrum region into four main segments for further
discussion as follows: VIS (0.45-0.7um), NIR (0.7-1.3pum), SWIR-1 (1.52-1.75um) and SWIR-2 (2.01-2.44um).

Based on the above selected spectral segments, the ASDS values were calculated for every target for each spectral segment. In
addition, a sum of all segments (ALL) was selected and its ASDS values were calculated to allow an overview of the entire
spectral region. Doing so revel a performance sequence for each spectral segment and water vapor level. Based on this
sequence we generated a look-up-table (Table 1) that provides the method in each spectral segment and water vapor condition
(lowest ASDS values in each category)

water content (cm)

coverage 0.5 1.5 2.5 3.5 4.5
ALL vegetation | Acom Acom Acom CAMS5S Acom

vegetation

-soil Atcor Atcor Atcor CAMS5S CAMS5S

soil Atcor Atcor Atcor Atcor CAMS5S
VIS vegetation = Acom Acom Acom CAM5S Acom

vegetation

-soil Atrem Atrem CAMS5S Atrem Atrem

soil Atrem Atrem CAMS5S Atrem Atrem
NIR vegetation = Flaash Flaash Flaash CAMS5S CAMS5S

vegetation

-soil Flaash Flaash Flaash Atcor Atcor

soil Atcor Atcor Atcor Atcor Atcor
SWIR-1 vegetation = Atcor Atcor Atcor Atcor Atcor

vegetation

-soll Atcor Atcor Atcor Atcor Atcor

soil Atcor Atcor Atcor Atcor Atrem
SWIR-2 vegetation | Atcor Atcor Atcor Atcor CAMS5S

vegetation

-soll Atcor Atcor Atcor Atcor CAM5S

soil Atcor Atcor Atcor Atcor CAM5S

From Table 1 it is postulated that HATCH method is missing from all of the presented categories while ATCOR performs
in more than the 54%. ATCOR found in all categories but best performed in the SWIR-1 spectral region. CAMSS found to
best performed at high water vapor content, occupies bout 40% of the 4.5cm water vapor content scenarios. ACRON found
in 11% from the categories and best performs at vegetation targets under low and intermediate water vapor content. ATREM
found in 11% of the entire categories and mostly in soil targets across the VIS region. FLAASH found to hold 8% of the
cases mostly across the NIR spectral region and over vegetation areas. It can be concluded that there is no a single method
that optimally performs across the entire spectral regions and thus a combination between available methods is required. In
this regard we suggest to run automatically all six methods on a given data set and based on a look-up-table (similar to
Table-1) to spectral mosaic the sixth cubes into a full corrected cube. The pre-classification process to select the targets in
question (vegetation, soil or their mixtures) may be done via NDVI (or similar vegetation index) whereas water vapor level
can be estimated in one of the methods suggested in the next section (for the entire scene).



3.2 Water vapor retrieval

3.2.1 Synthetic data

In each of the six methods, a complementary algorithm to retrieve the water vapor content, pixel by pixel, is available. In
general, every method calculates the water vapor content differently and thus the final results may be different. To check the
methods’ performances in water vapor retrieval, a 2D scatter plot between the retrieved and true water vapor images in each
scenario was constructed. These scatter plots, show significant linear relationships between most of the methods and the
reference water vapor and their equations and R2 are provided in Table 2. Looking on these equations it is apparent that
ATREM method overestimates the water vapor content by nearly 60%, whereas HATCH underestimates the water vapor
content by about 15%, whereas ACRON and ATCOR provides relatively correct water vapor content. In general, variation of
the points in the scatter plot from a perfect 1:1 line may be a product of two sources: 1) existence of another chromophore in
the pixel’s spectrum (e.g. liquid water) which makes the absorption feature around the relevant region a mixed problem; and
2) a problem in the algorithm calculating the water vapor content. Table 2 provides the linear equation obtained from the
scatter plots for each soil coverage, in the six methods examined. Variation from 1:1 line in vegetation account for sources
1+2 and variation in soil account for source 2. Differences between the two (vegetation and soil) provides source's 1 effect.

Surface Converge Vegetation Vegetation + Soil Soil
METHOD
HATCH 0.874X +0.1672 0.842X+0.1575 0.8346X+0.1104
(R2=0.998) (R2=0.998) (R2=0.998)
ACRON 1.024X-0.0021 (R2=1) 1.027X-0.0063 1.026X-0.0048
(R2=1) (R2=0.999)
ATREM 1.657X-0.1319 1.611X-0.167 1.539X-0.219
(R2=0.999) (R2=0.999) (R2=0.998)
ATCOR 1.057X-0.0132 1.0488X-0.037 1.044X-0.0439
(R2=0.994) (R2=0.995) (R2=0.997)
CAMSS 1.144X-0.6225 (R2=1) 1.142X-0.620 1.139X-0.619
(R2=1) (R2=1)
FLAASH 0.677X+3.753 0.702X+3.694 0.701X+3.692
(R2=0.8539) (R2=0.861) (R2=0.996)

As can be seen from the linear equations presented in Table 2, vegetation areas overestimate water vapor in HATCH,
ATREM, CAMS5S and ATCOR whereas in ACORN and FLASSH vegetation has no significant change. The best fit to 1:1
was obtained in ACRON and ATCOR in all targets. ATREM overestimate water vapor by nearly 60% and CAMSS by 14%
where HATACH underestimate it by nearly 13%. The worst method to retrieve water vapor is found to be FLAASH with
30% underestimating of the water vapor content with relatively poor regression level. Based on the above results, we can set
a sequence to select the best method for water vapor content retrieval as follow: ACORN=ATCOR > HATCH>
CAMSS>ATREM> >> FLAASH.

4. SUMMARY AND CONCLUSIONS

Model-based methods to retrieve surface reflectance and water vapor content give varied results. Variation can be seen in each
method when surface reflectance is changing (from pure vegetation to pure soil), when the water vapor is constant and when
it is changing (from 0.5cm to 4.5cm), while the surface reflectance is constant. The synthetic data provide optimal conditions
for reliable comparison and judgment between the basic performances of the three selected methods. Differences of more than
26% between actual and retrieved reflectance were found in particular wavelengths. Two sources of difference in retrieving
reflectance were found: albedo drift and artifacts. A statistical parameter to quantitatively calculate the total difference in
selected spectrum segments was used to establish a look up table to select a method for a pixel for the atmospheric
correction. CAMSS was found to better perform in relatively humid areas whereas ATCOR in more than 50% of the
scenarios (data coverage and water vapor content). In generation of the water vapor image, ATREM has been found to
overestimate water vapor by about 60%, HATCH to underestimate it by about 15% and ACRON and ATCOR to provide
reliable results with a low variation of about 1%. FLAASH was found to provide worst results. Vegetation coverage adds
liquid water signals to the calculated water vapor content. In summary it can be concluded that every model-based method
has its own drawbacks and limitations whereas the synthetic data generator along with the ASDS calculation provide a
reliable tool to examine their performances. Although we believe that the conclusions of this paper may be valid for other
2001 AVIRIS data sets, with similar reflectance properties, other sensors and other targets require a separate investigation of
their performances in both water vapor and reflectance retrieval. For future comparison of similar questions, the ASDS
parameters and the spectral segments used in this study are highly recommended.
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